Home Strategy Activities Grants Publications People Sponsors Blog Contact Us 
  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

publications:publi:momhl19jcc [2019/04/25 08:49]
publications:publi:momhl19jcc [2019/09/12 08:51] (current)
Line 1: Line 1:
  
 +<​html><​div id="​bib">​
 +
 +<p> <h1> MoMHL19jcc</​h1>​
 + <​p><​span class="​BibAuthor">​R. Moreno-Vozmediano,​ R.S. Montero, E. Huedo, I.M. Llorente</​span>​. <span class="​BibJournalTitle">​Efficient resource provisioning for elastic Cloud services based on machine learning techniques</​span>​. <span class="​BibJournalName">​Journal of Cloud Computing</​span>,​ 8(1), April 2019.</​P><​p>​
 +<p>
 +<a name="​abstract"></​a><​h2>​ Abstract ​ </h2> <​P> ​
 +Automated resource provisioning techniques enable the implementation of elastic services, by adapting the available resources to the service demand. This is essential for reducing power consumption and guaranteeing QoS and SLA fulfillment,​ especially for those services with strict QoS requirements in terms of latency or response time, such as web servers with high traffic load, data stream processing, or real-time big data analytics. Elasticity is often implemented in cloud platforms and virtualized data-centers by means of auto-scaling mechanisms. These make automated resource provisioning decisions based on the value of specific infrastructure and/or service performance metrics. This paper presents and evaluates a novel predictive auto-scaling mechanism based on machine learning techniques for time series forecasting and queuing theory. The new mechanism aims to accurately predict the processing load of a distributed server and estimate the appropriate number of resources that must be provisioned in order to optimize the service response time and fulfill the SLA contracted by the user, while attenuating resource over-provisioning in order to reduce energy consumption and infrastructure costs. The results show that the proposed model obtains a better forecasting accuracy than other classical models, and makes a resource allocation closer to the optimal case<​p>​
 + <a name="​keyword"></​a>​ <​h2>​Keywords </h2> <p> [ <a href="/​doku.php?​id=publications:​keyword:​edgedata-cm">​Edgedata-cm</​a>​ ] [ <a href="/​doku.php?​id=publications:​keyword:​cloud">​Cloud</​a>​ ] 
 +<a name="​contact"></​a><​h2>​ Contact ​ </h2> <​P> ​
 +<a href="​mailto:​rmoreno@dacya.ucm.es">​Rafael ​ Moreno-Vozmediano</​a> ​ <a href="/​doku.php?​id=people:​moreno">​ <img src="/​lib/​exe/​fetch.php?​w=&​h=&​cache=cache&​media=html_icon.png"​ align=top border=0 alt =""></​a><​br> ​
 +<a href="​mailto:​rubensm@dacya.ucm.es">​Ruben S.  Montero</​a> ​ <a href="/​doku.php?​id=people:​ruben">​ <img src="/​lib/​exe/​fetch.php?​w=&​h=&​cache=cache&​media=html_icon.png"​ align=top border=0 alt =""></​a><​br> ​
 +<a href="​mailto:​ehuedo@fdi.ucm.es">​Eduardo ​ Huedo</​a> ​ <a href="/​ehuedo">​ <img src="/​lib/​exe/​fetch.php?​w=&​h=&​cache=cache&​media=html_icon.png"​ align=top border=0 alt =""></​a><​br> ​
 +<a href="​mailto:​llorente@dacya.ucm.es">​Ignacio M.  Llorente</​a> ​ <a href="/​llorente">​ <img src="/​lib/​exe/​fetch.php?​w=&​h=&​cache=cache&​media=html_icon.png"​ align=top border=0 alt =""></​a><​br> ​
 +
 +<a name="​bib"></​a><​h2>​ BibTex Reference ​ </h2> <​P> ​
 +@article{MoMHL19jcc,​ <​br>&​nbsp;&​nbsp;&​nbsp;​Author = {Moreno-Vozmediano,​ R. and Montero, R.S. and Huedo, E. and Llorente, I.M.},<​br>&​nbsp;&​nbsp;&​nbsp;​Title = {Efficient resource provisioning for elastic Cloud services based on machine learning techniques},<​br>&​nbsp;&​nbsp;&​nbsp;​Journal = {Journal of Cloud Computing},<​br>&​nbsp;&​nbsp;&​nbsp;​Volume = {8},<​br>&​nbsp;&​nbsp;&​nbsp;​Number = {1},<​br>&​nbsp;&​nbsp;&​nbsp;​Month = {April},<​br>&​nbsp;&​nbsp;&​nbsp;​Year = {2019}<​br>​} <​br><​p>​
 +
 +</​div></​html>​
Admin · Log In