Enabling Technologies for Cloud Computing

Ignacio M. Llorente
dsa-research.org

Distributed Systems Architecture Research Group
Universidad Complutense de Madrid

3th June 2010
1st European Summit on the Future Internet
Luxembourg
**Position in the Cloud Ecosystem**

<table>
<thead>
<tr>
<th>What</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-demand access to any application</td>
<td>End-user (does not care about hw or sw)</td>
</tr>
<tr>
<td>Platform for building and delivering web applications</td>
<td>Developer (no managing of the underlying hw &amp; swlayers)</td>
</tr>
</tbody>
</table>

**Enabling Technologies for Cloud Computing**

- **Software as a Service**
  - On-demand access to any application
  - End-user (does not care about hw or sw)
  - Skype, Gmail, Facebook

- **Platform as a Service**
  - Platform for building and delivering web applications
  - Developer (no managing of the underlying hw & sw layers)
  - Windows Azure, force.com

- **Infrastructure as a Service**
  - Innovative open, flexible and scalable technology to configure your own IT resources into a IaaS cloud

OpenNebula.org
Transforming your IT Infrastructure into a Cloud

Enabling Technologies for Cloud Computing

Commercial Cloud Provider

- Flexible and elastic capacity to meet dynamic demands of service
- Ubiquitous network access
- Pay per use and on-demand access

Building your Own Cloud

- Optimize and Simplify Internal Operations
  - Centralized management of all servers and services with dynamic resizing of infrastructure and dynamic allocation of capacity
  - Higher utilization and operational saving of existing resources with server consolidation and removal of application silos
  - Lower infrastructure expenses with combination of local and remote Cloud resources
- Support new IT, scientific, or business Cloud services
## Deployment Models

### Enabling Technologies for Cloud Computing

<table>
<thead>
<tr>
<th>Model</th>
<th>Definition</th>
<th>Examples of Deployment</th>
</tr>
</thead>
</table>
| **Private** | Infrastructure is owned by a single organization and made available only to the organization | • Optimize and simplify **internal operation**  
• **SaaS/PaaS** support  
• IT consolidation within **large organizations** (Government Clouds, University Clouds…) |
| **Public** | Infrastructure is owned by a single organization and made available to other organizations | • **Commercial cloud providers**  
• **Community public clouds** by ICT service centers to enable scientific and educational projects to experiment with cloud computing  
• **Special purpose clouds** with dedicated capabilities (Science Clouds, HPC Clouds..)  
• **Regional clouds** to address regulatory or latency issues |
| **Hybrid** | Infrastructure is a composition of two or more clouds | • **Cloudbursting** to address peak demands  
• **Cloud Federation** to share infrastructure with partners  
• **Cloud Aggregation** to provide a larger resource infrastructure |
Designing a Cloud Driven by Requirements

Enabling Technologies for Cloud Computing

Requirements from Usage and Deployment Scenarios
- **Users**: Functionality exposed and workload profile
- **Managers**: Flexible, efficient and scalable management of the Cloud
- **Business**: Hybrid cloud computing and federation
- **Integrators**: Open architecture, interfaces and code

“One solution does not fit all requirements and constraints, a properly architectured solution should fully align with your Cloud strategy”

Constraints from Existing Infrastructure and Processes in the Organization
Building a Cloud with OpenNebula

Enabling Technologies for Cloud Computing

Innovations
Technology challenges in cloud computing management from business use cases

Open-source Toolkit
OpenNebula v1.4

- **Open and flexible tool** to fit into any datacenter and integrate with any ecosystem component
- **Open-source** released under Apache v2.0, and distributed in Ubuntu
- **Most advanced solution** to build private, public, federated and hybrid clouds
- Based on **standards** avoid vendor lock-in and to enable interoperability
- **Efficient and scalable management** of the cloud
OpenNebula Ecosystem

Enabling Technologies for Cloud Computing

Open Community for Cloud Computing

- **Haizea Lease Manager (University of Chicago):** Advance reservation of capacity and queuing of best effort requests
- **Cloud Management Console (SARA Computing and Networking Services):** Web interface for OpenNebula
- **Virtual Cluster Tool (CRS4 Distributed Computing Group):** Atomic virtual cluster management with versioning and multiple transport protocols.
- **DeltaCloud Driver (DSA-Research@UCM)**
- **RESERVOIR Policy Engine (IBM Haifa/Elsag Datamat):** Policy-driven probabilistic admission control and dynamic placement optimization to satisfy site level management policies
- **VM Consolidation Scheduler (DSA-Research@UCM):** Periodic re-placement of VMs for server consolidation and suspension/resume of physical resources
- **Claudia (Telefonica I+D):** SLA-driven automatic service management
- **Under Development:** SUN Cloud API, vCloud API, VirtualBox plugin, dashboard for infrastructure management, new schedulers, SLA and security framework, Grid service manager, LVM and SAN support,…
## Experiences

### Enabling Technologies for Cloud Computing

### Deployment Cases

<table>
<thead>
<tr>
<th>A team at Clemson University and CERN has used OpenNebula to deploy thousands of VMs on 400 hosts (3,200 cores) running Xen</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenNebula was integrated in internal network and configuration management</td>
</tr>
<tr>
<td>Contributed drivers for using LVM based disk images</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Dgrid Resource Center Ruhr (DGRZR) has used OpenNebula to manage 248 Blades with a total of 1,984 cores.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenNebula is used to support the execution of a virtualized Grid site in D-Grid and EGEE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SARA High Performance Computing Center uses OpenNebula in its new HPC Cloud service on 128 cores across 16 servers with KVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenNebula is used to support the execution of virtual clusters and HPC applications</td>
</tr>
<tr>
<td>Authors of the OpenNebula Management Console</td>
</tr>
</tbody>
</table>
Innovative Projects

Enabling Technologies for Cloud Computing

European Projects on Cloud Computing Infrastructures

**Resources and Services Virtualization without Barriers**
- Open source technology to enable deployment and management of complex IT services across different administrative domains

**Enhancing Grid Infrastructures with Cloud Computing**
- Simplify and optimize its use and operation, providing a more flexible, dynamic computing environment for scientists.
- Enhance existing computing infrastructures with “IaaS” paradigms

**Building Service Testbeds on FIRE**
- Design, build and operate a multi-site cloud-based facility to support research across applications, services and systems targeting services research community on Future Internet
Commercial Support by C12G.org

Enabling Technologies for Cloud Computing

OpenNebula Enterprise Edition>

The Enterprise-grade Cloud Management Tool to Build your Cloud Solution, Product or Service

C12G LABS

About C12G Labs
C12G Labs provides value-added solutions around the certified and supported Enterprise Edition of the widely-used OpenNebula toolkit for Cloud Computing. Strong partner relationships are the foundation of C12G Labs, providing our customers and partners with an enterprise-grade and flexible cloud management technology that meets the performance, integration and configuration requirements of their infrastructure, processes or use cases to build custom cloud services, solutions or products.

Answering Questions
- Why OpenNebula?
- Why OpenNebula Enterprise?
- Why Being a C12G’s Partner?
- What is our Value Proposition?

Top Site Information
- Frequently Asked Questions
- White Papers
- Partner Programs
- OpenNebula Community

Contact Us
- Partnership: partners@c12g.com
- Contact: contact@c12g.com
- Skype: C12G_OpenNebula
- USA: +1 650 646 3820
- Europa/UK: +44 20 7155 1748

From Our Blog
- OpenNebula Enterprise Edition v1.4 - May 10, 2010
- OpenNebula Cloud Toolkit Goes Commercial - May 5, 2010

Copyright 2010 © C12G Labs B.L. All Rights Reserved. Legal Notice
Please send comments to webmaster
Thanks

Funding Agencies

• European Commission: RESERVOIR 2008-2011, EU agreement 215605
• Ministry Science&Innovation: HPCcloud 2010-2012, MICINN TIN2009-07146
• Community of Madrid: MEADIANET 2010-2013 CAM S2009/TIC-1468

Other Sponsors

• C12G Labs dedicates an amount of its own engineering resources to support and develop OpenNebula

The OpenNebula Community

• The OpenNebula Team: Ignacio M. Llorente, Ruben S. Montero, Tino Vazquez, Javier Fontan, Jaime Melis, Carlos Martín, Rafael Moreno, Daniel Molina, and Borja Sotomayor

• … and many value community contributors from several organizations

Your support and contribution are very much appreciated!
Research References


- B. Sotomayor, R. S. Montero, I. M. Llorente and I. Foster, “Virtual Infrastructure Management in Private and Hybrid Clouds”, IEEE Internet Computing, September/October 2009 (vol. 13 no. 5)