Clouds, Grids & Virtual Machines

Ruben Santiago Montero
dsa-research.org

Distributed Systems Architecture Research Group
Universidad Complutense de Madrid
Objectives

- Brief Overview of Clouds
- The IaaS approach for Infrastructure Provisioning
- Management of Virtual Infrastructures
- IaaS for the dynamic provisioning of virtual clusters in Grids
- Grids & Clouds: Trends and Opportunities
- OpenNebula Tutorial
Cloud Computing in a Nutshell

<table>
<thead>
<tr>
<th>What</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-demand access to any application</td>
<td>End-user (does not care about hw or sw)</td>
</tr>
<tr>
<td>Platform for building and delivering web applications</td>
<td>Developer (no managing of the underlying hw & sw layers)</td>
</tr>
<tr>
<td>Delivery of a raw computer infrastructure</td>
<td>System Administrator (complete management of the computer infrastructure)</td>
</tr>
</tbody>
</table>

Software as a Service
- Skype
- Gmail
- Facebook

Platform as a Service
- Windows Azure
- Force.com

Infrastructure as a Service
- GoGrid
- Flexiscale
- Amazon Web Services
The IaaS Clouds: A Four-Point Checklist

- Simple Interface
- Raw *Infrastructure* Resources
 - Total control of the resources
 - Capacity leased in the form of Vms
 - Complete Service-HW decoupling
- Pay-as-you-go
 - A single user can not get all the resources
- Elastic & “infinite” Capacity

NOTE: This applies to any IaaS Cloud (private, public...
Service Deployment using IaaS

Total control of service layout
- Software Stack
- Type & Number of components
- Service Elasticity
- Placement Constraints

Service End-Users

Web Server (Load Balancer)
App Server
App Server
App Server

Network

DBs (storage)
The Anatomy of an IaaS Cloud

Cloud API (web) -> VMs (Virtual Infrastructure Manager) -> Service (Network) -> Image Repositories (Storage) -> Physical Infrastructure (web)
Virtual Infrastructure Manager

- VMs are great!!...but something more is needed
 - Where did/do I put my VM? (**scheduling & monitoring**)
 - How do I provision a new cluster node? (**clone & context**)
 - What MAC addresses are available? (**networking**)
- Provides a *uniform view* of the resource pool
- **Life-cycle management** and monitoring of VM
- The VIM **integrates** Image, Network and Virtualization
Virtual Infrastructure Manager: Image Management

- VM Images Sources:
 - Master images in local repositories
 - Appliance supplier
 - Creation on the fly
- Clones have to be contextualized (Context VBD)
Virtual Infrastructure Manager: Networking

- VMs interconnected through **one or more** networks
 - Isolated, layer 2 LANs
 - Virtual networks are dynamically created
 - Medium size networks (x.x.x.x/20) with limited public IPs
- **TCP/IP services** are not responsibility of the VM Manager
Virtual Infrastructure Manager: Life-cycle

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Selection:</td>
<td>Where do I place the VM?</td>
</tr>
<tr>
<td></td>
<td>- Capacity planning (consolidation)</td>
</tr>
<tr>
<td></td>
<td>- Placement requirements (e.g. affinity)</td>
</tr>
<tr>
<td></td>
<td>- Placement Heuristics (e.g. Green IT, AR...)</td>
</tr>
<tr>
<td>Resource Preparation:</td>
<td>What do I need for the VM?</td>
</tr>
<tr>
<td></td>
<td>- Network preparation</td>
</tr>
<tr>
<td></td>
<td>- Image cloning & contextualization</td>
</tr>
<tr>
<td>VM Creation:</td>
<td>How do I start a VM?</td>
</tr>
<tr>
<td></td>
<td>- Interface with different hypervisors</td>
</tr>
<tr>
<td>VM Monitoring:</td>
<td>How is the VM doing?</td>
</tr>
<tr>
<td>VM Migration:</td>
<td>Is there a better resource for the VM?</td>
</tr>
<tr>
<td></td>
<td>- Adjust placement to better fit to the infrastructure target</td>
</tr>
<tr>
<td>VM Termination:</td>
<td>Do I need to save any VM image?</td>
</tr>
</tbody>
</table>
Virtual Infrastructure Manager: OpenNebula

www.OpenNebula.org

- Flexible & Open Design
 - Third-party components
 - Easily adapted & extended
- Management of Virtual Services
 - Image, Network & Context
- Integrated with cloud providers
- Open Source – Apache2
- Included in Ubuntu 9.04 (server)
Some Limitations of Current Grids

- High degree of heterogeneity (software & hardware)
- High operational costs
- Isolate and partition resources contributed to the Grid
- Specific environment requirements for different Vos
- Users simply do not feel like adopting our execution models (*pilot jobs...*)

Grids are difficult to maintain, operate and use
Grids & Virtual Machines

Cluster users

Service Layer

Virtual Network

Virtual Workernodes (WN)

Virtual Infrastructure Manager

Physical Infrastructure
Grids & Virtual Machines

Cluster users

Virtual Network

Cluster Front-end

Virtual WNs

User Requests
- “used-to” LRMS interface
- Virtualization overhead

OpenNebula (VIM)

Physical Infrastructure
Cluster Consolidation
- Multiple clusters in a single cluster
- Dynamic provision rules
- Leverage VMM functionality
Clusters & Virtual Machines

Cluster users

Service Layer

OpenNebula (VIM)

Infrastructure Layer

Cluster Partitioning
- Performance partitioning
- Isolate cluster workload
- Dedicated HA partitions

Physical Infr. Dedicated WN
Grids & Virtual Machines

Cluster users

Service Layer

Virtual WNs

Heterogenous Workloads
- Dynamic provision of cluster configurations
- Simultaneous support of different services
- E.g. on-demand VO workernodes in Grids

Infrastructure Layer

Physical Infrastructure

Web Server

HTTP clients

Cluster Front-end

OpenNebula (VIM)
A Complete Grid Middleware Stack

- **Applications**
 - Unmodified Applications (Grid or local)
 - Interfaces preserved (qsub, DRMAA..)

- **Grid Middleware Layer**
 - Meta-schedulers (GridWay, Condor/G...)
 - gLite, UNICORE, Globus...
 - Cluster Frontend (SGE...)

- **Computing Service Layer**
 - WNs register to different queues
 - Multiple VO-specific clusters

- **Infrastructure Layer**
 - OpenNebula (VIM)
 - Infrastructure consolidation
 - Infrastructure partitioning
 - Infrastructure adaptation
A Complete Grid Middleware Stack

Meta-schedulers (GridWay, Condor/G…)

- Unmodified Applications (Grid or local)
- Interfaces preserved (qsub, DRMAA..)

Applications

- Virtual resources are exposed by GM
- Dynamic scheduling
- Fault detection & recovery

Grid Middleware Layer

- WNs register to different queues
- Multiple VO-specific clusters

Computing Service Layer

- Infrastructure consolidation
- Infrastructure partitioning
- Infrastructure adaptation

Infrastructure Layer

Grid/Cluster as a Service!!!
Grids, Clouds and Virtual Machines

OpenNebula (Virtual Infrastructure Manager)

Cluster users

Virtual Workernodes

Virtual Network

Service Layer

Cluster Front-end

Local Physical Infrastructure

Infrastructure Layer

Cloud Provider
Tutorial: Hybrid Deployment of a Virtual Cluster

Amazon EC2

Worker Node

Worker Node

OpenVPN Tunnels

Internet Connection

OpenVPN Server

SGE Front-End

Physical Host

Local private network

Bridge

Worker Node

Worker Node

Bridge

Worker Node

Worker Node

Bridge

Worker Node

Worker Node

Physical Host

Physical Host

Physical Host
Grids & Clouds: Trends

How are the resources provisioned?

Where are the resources provisioned from?

- Remote
- Local

- Physical
- Virtual

- GRID
- CLOUD
- YOUR SITE
- PRIVATE CLOUD
• Virtualization, cloud, and grid are complementary technologies and will coexist and cooperate at different levels of abstraction

• Virtualization can solve many obstacles for Grid adoption

• Virtualization and cloud do NOT require any modification within service layers (end-user perspective)

• Separation between service and infrastructure layers will allow the application of the utility model to scientific computing in any form (HPC MPI)

• Share Hardware not Services (LRMS)!!!
More info, downloads, mailing lists at www.OpenNebula.org

OpenNebula is partially funded by the “RESERVOIR– Resources and Services Virtualization without Barriers” project
EU grant agreement 215605

www.reservoir-fp7.eu/

The OpenNebula Team

- Ignacio M. Llorente (llorente@dacya.ucm.es)
- Ruben S. Montero (rubensm@dacya.ucm.es)
- Rafel Moreno (rmoreno@dacya.ucm.es)
- Tino Vazquez (tinova@fdi.ucm.es)
- Javier Fontan (jfontan@fdi.ucm.es)
THANK YOU FOR YOUR ATTENTION

QUESTIONS?